-4.9t^2=-110

Simple and best practice solution for -4.9t^2=-110 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4.9t^2=-110 equation:



-4.9t^2=-110
We move all terms to the left:
-4.9t^2-(-110)=0
We add all the numbers together, and all the variables
-4.9t^2+110=0
a = -4.9; b = 0; c = +110;
Δ = b2-4ac
Δ = 02-4·(-4.9)·110
Δ = 2156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2156}=\sqrt{196*11}=\sqrt{196}*\sqrt{11}=14\sqrt{11}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{11}}{2*-4.9}=\frac{0-14\sqrt{11}}{-9.8} =-\frac{14\sqrt{11}}{-9.8} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{11}}{2*-4.9}=\frac{0+14\sqrt{11}}{-9.8} =\frac{14\sqrt{11}}{-9.8} $

See similar equations:

| 7(p=9)=-21 | | (35-15)/2=x | | 1/2(4a-8)=9 | | 4x+12=2x+15 | | -3x+2(4x-8)=-46 | | 9=-2(x+4)-1 | | 3x+5=5x+57 | | 5n^2+14n=24 | | 35+15=2x | | w/6.4=2 | | -w+158=71 | | 12x-2x+60=12x+24 | | X+2x+5+x=20 | | 1-b+8=12 | | 3x+5=5x−57 | | 3x-1+6x-5+8x-35=180 | | 2x-x/3=-6+1 | | u/8=3/11 | | 2.6+17z=13z+18 | | 2x-x/32=-6+1 | | 2k-6k=54 | | 3/5x+1/2=5/2x | | 8/17=u/9 | | -14-8x=-2(-3=7) | | 20=100-20w | | 32.5=-0.01^2+0.975x+16 | | -(2x-7)+3(4x+1)=5(x-2) | | 5x^2/3+10=30 | | -6(x-3)+x+5=-4x+2x+2 | | 4x=1=19 | | 2(8q+5)=4q | | 8x-23=34 |

Equations solver categories